Arithmetical complexity of infinite words SV Avgustinovich, DG Fon-Der-Flaass, AE Frid | 55* | 1999 |

On periodicity and low complexity of infinite permutations DG Fon-Der-Flaass, AE Frid European Journal of Combinatorics 28 (8), 2106-2114, 2007 | 54 | 2007 |

On palindromic factorization of words AE Frid, S Puzynina, LQ Zamboni Advances in Applied Mathematics 50 (5), 737-748, 2013 | 41 | 2013 |

Arithmetical complexity of symmetric D0L words AE Frid Theoretical computer science 306 (1-3), 535-542, 2003 | 32 | 2003 |

On uniform DOL words AE Frid Annual Symposium on Theoretical Aspects of Computer Science, 544-554, 1998 | 32 | 1998 |

On the frequency of factors in a D0L word AE Frid Journal of Automata, Languages and Combinatorics 3 (1), 29-42, 1998 | 31 | 1998 |

Sequences of low arithmetical complexity SV Avgustinovich, J Cassaigne, AE Frid RAIRO-Theoretical Informatics and Applications 40 (4), 569-582, 2006 | 30 | 2006 |

On the arithmetical complexity of Sturmian words J Cassaigne, AE Frid Theoretical computer science 380 (3), 304-316, 2007 | 28 | 2007 |

Sequences of linear arithmetical complexity AE Frid Theoretical computer science 339 (1), 68-87, 2005 | 28 | 2005 |

Infinite permutations of lowest maximal pattern complexity SV Avgustinovich, A Frid, T Kamae, P Salimov Theoretical Computer Science 412 (27), 2911-2921, 2011 | 26 | 2011 |

Sturmian numeration systems and decompositions to palindromes AE Frid European Journal of Combinatorics 71, 202-212, 2018 | 22 | 2018 |

On possible growths of arithmetical complexity AE Frid RAIRO-Theoretical Informatics and Applications 40 (3), 443-458, 2006 | 22 | 2006 |

A unique decomposition theorem for factorial languages SV Avgustinovich, AE Frid International Journal of Algebra and Computation 15 (01), 149-160, 2005 | 22 | 2005 |

On bispecial words and subword complexity of DOL sequences A Frid, SV Avgustinovich Sequences and their Applications, 191-204, 1999 | 15 | 1999 |

On automatic infinite permutations A Frid, L Zamboni RAIRO-Theoretical Informatics and Applications 46 (1), 77-85, 2012 | 14 | 2012 |

The subword complexity of fixed points of binary uniform morphisms AE Frid International Symposium on Fundamentals of Computation Theory, 179-187, 1997 | 13 | 1997 |

Words avoiding abelian inclusions SV Avgustinovich, AE Frid Journal of Automata, Languages and Combinatorics 7 (1), 3-9, 2001 | 12 | 2001 |

Overlap-free symmetric D0L words A Frid Discrete Mathematics & Theoretical Computer Science 4, 2001 | 12 | 2001 |

Infinite permutations vs. infinite words AE Frid arXiv preprint arXiv:1108.3616, 2011 | 9 | 2011 |

A lower bound for the arithmetical complexity of Sturmian words AČ Frid Sibirskie Člektronnye Matematicheskie Izvestiya [Siberian Electronic …, 2005 | 9 | 2005 |